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THE DYNAMIC PROBLEM OF INTERACTION BETWEEN AN ELASTIC PUNCH 
AND A FLUID THROUGH A THIN COVER* 

E.V. KOVALENKO 

The problem of interaction through a thin cover between an elastic body (punch) and 

an infinitely deep layer of perfect heavy fluid is considered. The elastic punch 
is pressed to the cover boundary and moves along it at constant velocity without 
friction. The flow of fluid is assumed stable and potential. Problemsofthiskind 
arise in investigations ofprocessesofdynamic action of elastic bodies on the sur- 

face of an ice field. With the use of the integral Fourier transform the problem 

is reduced in a finite interval to an integral equation of the first kind of the 

convolution type with a singular kernel. The method of orthogonal polynomials /l/ 
is usedfor obtaining an approximate solution of the derived equation. The struct- 

ure of solution is analyzed. 

1. Statement of the problem, the integral equation. Consider a layerofperfect 

heavy fluid of infinite depth (y< 0) and density p, whose surface is covered by a layer of 

small thickness h with elastic properties G and v. An elastic punch (G,, v,), pressed with 

force I' and moment fiI = Pe to the boundary of this composite base, moves along it without 

friction at constant velocity V. It is assumed that under these conditions the cover layer 

does not peel off from the fluid. Let in a coordinate system attached to the punch,thepunch 

base be defined by function f(z'), and the contact line by the inequality Is’j<a. In the 

approximation of the Hertz theory for the displacement derivative u,, of points of the punch 

surface along the y-axis we then have the formula 

where q* (2, t) = q(x') is the contact pressure that is nonzero only when 1 5’ 1 < a, E’ -= 5 - lit. 
As the physical model of the cover we take that of a thin plate extended lengthwise by 

a continuous stress. Such layer is defined by the equation 

(1.1) 

pp*uw - hm” = p* (I, t) - q (x’) - hp*u”, f3* = G [G (I- Y)]-l (1.2) 

where u is the displacement of points of the median plane of the plate along the y-axis, 0 

is the normal stress averaged over the thickness acting in the transverse cross section of 

the layer, p*(s, i)=p(d) is the reaction pressure of the fluid on the layer, and p* is the 

density of the layer material. In what follows the prime at the moving coordinate Z' will be 

omitted, since the analysis is carried out in the system attached to the punch. 
Let us assume that the physico-mechanical properties of the fluid are defined by the 

linearized equations of a stabilized potential flow 

Acp=O, u,=&V, I+,=& p=pv’--_pgy (1.3) 

where ~(z, y) is the velocity potential, p is the fluid pressure, %, uy are projections of 

fluid particle velocity on the axes of the moving coordinate system, g is the gravity con- 

stant, and p the fluid density. 

The condition of the punch and cover contact for lzl<a is obviously of the form 

v + 4 = --Is + c&*5- f @)I (1.4) 

where 6 +cc*z is the rigid displacement of the punch under the action of the applied to it 

force P and moment M. 
Taking into account the small thickness of the plate we transfer condition (1.2) from 

its median plane to the fluid boundary y = 0. Then 
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Dr;C’) - TV" = p (x) -q (x), D = VP*, T = h (a - p*V*) (1.5) 

We assume that, as in the theory of a thin wing /2/, the condition of contact between 
fluid and cover surface is of the form 

11.6) 

Then in conformity with (1.6) we can rewrite condition (1.2) in the form (when y = 0) 

(1.7) 

We assume that perturbations of the fluid induced by the punch motion disappear as (x2+ 
y")-+ oc I 

Let us now solve Eq.11.3) with boundary condition (1.7) and the condition of absence of 
perturbations at infinity using the integral Fourier transform. We obtain the following form- 
ula for the derivative of displacement v at Y = 0: 

(1.8) 

An = D, A, = T, A, = pv2, Aa =w 

Consider the case when the punch velocity is 

V < V*, where v", = x2 (r/l + 2x-%/p* - I), x2 = 16p*gh (9p)-'. 

The integrand of the inner integral in (1.8) has then no poles on therealsemiaxis u>U. 
Using the condition of contact of the punch and cover we obtain an integral equation in 

q(z) which in dimensionless variables and notation 

'p (X') = q (ad) e;‘, r (5’) = f (ax’) a-1 

x’ = xa-I, E’ = Ea-‘, 

h = ha-l, u’ = uh, p = 0,, (fJ*)-‘, At’ = Ai (A&.-*)-* 

(i = 0, 2, 3) 

is of the form 

K (z) = f L (a’) sin u’z du’, L (u’) = 
Aa’ d 

As’ (rt’fd j- Ap’ (~2)~ - As’u’ + 1 

Below, the prime at dimensionless variables is omitted. 
Equation (1.9) must be supplemented by the conditions of statics 

i\',= me (edq-l= i f’p g,)q 
-1 

(1.9) 

(1.10) 

2. Structure of the solution of integral equation (1.9). Prior to passing to 
theproofof theorem on the structure of solution of the integral equation (1.9) obtained in 
Sect.1, let us analyze some of the properties of function K(z) which will be subsequently re- 
quired. Taking into account the asymptotic behavior 

L(u) = A,u+U(u2) (u-+0) (2.1) 

L (u) = u-3 + 0 (ZJ-") (u+ m) 

we formulate the following lemma. 

Lemma. Relation 
K (z) E B,' (--R, R), K (2) -z (2 -+ 0) (2.2) 
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holds for all values of variable ZE (-R,R), where R is any arbitrarily large number. Here 
/lka(--R, R) is the domain of functions whose k-th derivatives satisfy at /z!< R Hdlder's 
condition with exponent O<a< 1. When k= CC=O, we have the domain C (-R,R) of func- 
tions that are continuous on I-R. RI . 

The lemma can be proved taking into account the following integrals /3/: 

Let us recall some statements from the theory of singular integral equations with Cauchy 

kernel /4/ related to the following auxilliary equation: 

1 

s ~dt=nQ(z) (lz161) (2.3) 
-i 

-1 

Theorem 1. If function $(z)EB~"(-~,~) and n>O, the solution of the integral equa- 

tion (2.3) exists in the class L, (--1,i), 1 <P < 2 and is of the form 

$7 (z) = IA* (5) (1 - zy-‘/” (2.4) 

with Y=OL when a< 1, and Y = 1-O when a = 1. 

If function v (z) E Boa (--1,l) (0 < a < I), I# (z) E Bop (1 - e. 1) (e> 0, 'I2 --C p .-< 1) and the relation ? 
‘Vo + sv 1+4 l_4WE)d4=0 

-1 

are satisfied, the solution of integral equation (2.3) is of the form 

a* (z) E BOY (-1, I), Y = illf (a, b - I/,) 

If function 

and relations 

are satisfied, the solution of integral equation (2.3) is of the form 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

o* (z) E B,' (-l,l), Y = inf (CL, p - '!.J 

where L,, (--1,l) (P >, 1) is the domain of functions that are summable with exponent p in the 

segment I-1,11. 

Formulas (2.4)- (2.8) are, thus, transforms of the integral equation (2.3) and enable us 

to obtain its solutions that are unbounded at both edges, bounded at one edge, or bounded at 
both edges. 

Assuming now that (P(Z)E L, (-1,l) (l<p < 2) in (1.9) and using the lemma of Theorem 1 

and the results of /5/, we can formulate the following theorems on the sturcture of solution 

of the integral equation (1.9). 

Theorem 2. If DEBTS (-l,l), 0< a< 1, then, if for given h, FE (0,m) there exits 

a solution of Eq.(1.9) such that cp(z)r_ L,(-l,l), l<p< 2, q (z) is of the form 

‘D (Lx) _ (0 (z)(i - zy,, 0 (x) E B”V (-1,l) (2.9) 
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and y = a when a<l, and y = I- E, e> 0 when a = 1. 

Theorem 3. If 1) r(~)EB,a(-1,1),O<afl, 2) r(z)rB,R. (~--%~),~>O,~/~<fi<l, 
then, if for given h, pi (0, m) there exists a solution of Eq.(l..9) such that I) cp (.z)E 

L,(--1,1), l<p<2, 2) icp(4 16% m>O for 1 - E< cc< % and condition 

is satisfied, cp(zj is of the form 

m(z)= 1/- +J(s,, o(r)f&~(---I,1), y=inf(a,B--'la) (2.10) 

Theorem 4, If 

1) r(x) E B,= (-i, 1), o< a < 1, 2) r(x) E &fi * (1 - E, i), E 7 0, "$< p < 1% 3) r(x) E&B (-k-1 + E), 
then, if for given h, PE (0,~) there exists a solution of Eq.cl.9) such that i) rp (ml = 
&(--1,1,) l<p<& 2) Iq(z) 1 <IFS, m>Owith 1 -8 <r,< 1 and -1 <z< --1 + e, and the 

reLations 

are satisfied, (p(x) is of the form 

cp ($1 = w (r)f1/1 -.r*r w(z) GZ B,v(--1,1), y = inf (a,fi - I&) (2.11) 

proof of Theorems 2-4 is given in /Sf. 

3. Derivation of solution of Eq.(1.9). F or finding an approximate solution of 
the integral equation (1.9) we use the method of orthogonal polynomials which we base on the 
application of certain spectral relations for classical Chebyshev and Jacobi polynomials. We 
have the formulas /3/ 

(3.1) 

We pass to the analysis of the general unbounded case (2.9) of the original integral eq- 
uation. We seek function W(X) appearing in (2.9) in the form of the following series in 
Chebyshev's polynomial of the first kind: 

o(s) =&~T&); ao===Ncn+ (3.2) 

By virtue of the properties of o(x) indicated in Theorem 2 and of relations 

BkY(-l,l)CLP.P(-l,l), lI~ll~,~~-l.l,~lI~llfa (3.3) 

(where it is assumed that a@ are coefficients of Fourier function m(x) in the cLosed in 
Lz,p (-1, 1) orthonormal system of functions) series (3.2) converges to O(E) in the norm of 
space I& (-4, I), p (2) = (1 - ;zB)-'/s, and the respective sequence {ar}E 1%. The definition of 
domain Lz,,(---1,1), ia is given in /6/. 

We expand function a* -F'(z) and the addition to kernel K((%--+4, respectively, in 
singleand double series of the form 
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(3.4) 

Using the orthogonality conditions of Chebyshev's polynomials we obtain 

By virtue of the described properties of functions r'(x) and K((g -z)/h) series (3.4) 
uniformly converge to these functions for 15 I .< 1, I E I < 1, h E (0, Ml. 

Theorem 5. If function r(z)(= Bla(--1, 1) (0< a< l), the sequence of numbers {at} of 
class l2 which satisfies the infinite system of linear algebraic equations 

(3.5) 

corresponds to any solution p(z) of class &j---l,*) (l<p< 2) of Eq.(1.9). 
On the other hand, when function r(s)EBp (-1,1) (0< a< 1), then solution cp fx) e 

L,_,(-*,I) of Eq.il.9) of form (2.9) corresponds to any solution {a,} of class lz of system 
(3.5). 

To prove this we substitute into the integral equation (1.91, with allowance for Theorem 
2 and formulas (3.3)‘ functions 'p (z), a* - r' (x), K ((5 - &‘k) of form (2.9) and (3.4), and 
calculate the integrals using the first of formulas (3.1) and the orthogonality property of 
Chebyshev's polynomials. As the result we have a formula whose both sides contain series in 
Chebyshev's polynomials of the second kind. Equating in it the coefficients in both sides at 
polynomials of the same number, we obtain the infinite system (3.5). Inverse transformations 
are readily carried out taking into account the relations /I/ 

II 'p (J) 1/4,,.& 1) < ')I1 II (0 (z) IlL, p(-l, 1) 1 p (LIZ) = (1 - zy,‘, 

m,=conet 

Theorem 6. If function r(z)E&a(-f,f)(O< a< j), the operator in the right-hand side 
of (3.5) acts in space 1, and is there completely continuous for all values of parameters h, 

Ii = (0, 00). 
Taking into account the properties of K((E-x)/J,) and r(z) indicated above and, also, 

formulas (3.31, we conclude that 

It follows from (3.6) that the operator in the right-hand side of (3.5) act in the space of 
sequoncies le and is there completely continuous for A, P E (0, 00). Thus the Hilbert alter- 
native on the solvability of infinite systems /6/ is applicable to system (3.5). 

Having solved the infinite system (3.5), we obtain using formulas (3.2) and (2.9) the 
solution of the input integral equation (1.9) for the general unbounded case. 

In the case of solution of the integral equation (1.9) bounded at one edge x = 1 we seek 
function o(z) appearing in (2.10) in the form 

Note that by virtue of properties of function w(z) (Theorem 3) and relations (3.3) series 
(3.7) converge to o(r) in the norm of space L,,, (--I, 1), p(s) = r/(1 - d/(1 + z). and the sequ- 

ence (IQ)= lP 
Then expanding functions CL* -r'(z) and R((E - x)/X), respectively, in single and double 

series of the form 
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and using theorthogonalityof Jacobi's polynomials, we obtain 
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(3.8) 

(3.9) 

Series (3.8) uniformly converge to a*-r'(z) and K(e- x)/k) for IGI<~,IEI<~,J+E(O,~). 

Theorem 7. If function r(z)EBla(-1, 1) (O< ad 1) and r (2) E &fi (1 - e, i), e > 0, 
VI< B Q 1, then the sequence of numbers {uk)E&, that satisfies the infinite system of lin- 

ear algebraic equations 

a,=% A% ok tar*)-’ ekn (h) -; 5 eon (h) G - b, (7~ = 1 l  2, . * a) 
h’=l 

(3.10) 

and the relation 

No=& 
1 2 (3.11) 

1 ak(ak*)-'eko(h) f f coo(h)- b" 

correspond to any solution m(m) E L,(--1,l) (i<p<2), 19(z) I<m(m>O) for 1 -e< m< i 
of Eq.ll.9). 

On the other hand, if function r(r)E BIG(-l, 1) (0< a< 1) and r(z)F B,a(l - e,l), e> 0, 
l/e< p < 1 and relation (3.11) is satisfied, solution cp (5) fz L,, (-4, I), Iv (4 I -< m Cm > 0) 
of Eq.Cl.9) of form (2.10) corresponds for 1 --E<z<~ to any solution (a,,}= I, of system 

(3.10). 
Note that formula (3.11) is the conditions of boundedness of solution of Eq.Cl.9) at the 

edge z= 1 and, after the determination of u,,((n = 1,2,...)in (3.10) I is used for determin- 
ing the unknown half-length a of the contact region. 

The proof of Theorem 7 can be carried out similarly to that of Theorem 5 with allowance 
for the inequality 

IIT (s) IlLI *_&l,l) < m2 IlO'(X) IILz,p(-l.l)l fw=l/++ m2 = const 

which is established using the HBlder inequality /6/. 
Note that, as in the previous case, the following theorem enables us to make conclusions 

regarding the solvability of a system in the domain of quadratically summable sequences for 
almost all values of parameters L p Cz (0, m). 

Theorem 8. If functions r(m) E %a (--I, 1) (0~ a < 1) and r (2) E BIB (I - E, I), E > 0, Vz ( 
p< 1, the operator in the right-hand side of (3.10) acts in space I, and is there complet- 

ely continuous for all h, p E(O, M). Proof of this theorem is the same as that of Theorem 6. 
Having solved system (3.10), we find the solution of the input equation (1.9) bounded at 

the edge z = 1 and simultaneously determine the unknown half-length of the region of contact 
using formulas (3.11) and (1.10). 

In conclusion we consider the case of solution of the integral equation (1.9) bounded at 
both edges x = &I . We seek function o(z) of the form 

D 

o @) = &?I akUk-, @) (3.12) 

Then, using the representations 

a* - r’ (cc) = ,f$ b,T, (5) , 

m 0 

“=I3 
li (+) = c z emn (J4 Urn-, (8 T,(X) 

m=1 n=o 
(3.13) 
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and the condition of orthogonality of Chebyshev's polynomials, we obtain 

On the basis of the properties of functions r(x) and K ((E - z)lh) indicated above it is 

possible to conclude that series (3.13) uniformly converge to 

1, I E I < 1, h E (0, m). 
Theorem 9. If 

1) r (4 E BP (-1, 1) (0 < a < I), 2) r (5) E BIB (1 - E, I), E > 0, Vz < 

the sequence of numbers {Q})E 1, that satisfies the infinite 

tions 
_ 

them for all values of Ir I< 

B G 1, 3) r (4 E BID (-4, -1 + E), 

system of linear algebriac equa- 

and the relations 

an= 21 “C akekn (h) 1 5 e,,,(h) :VCI - b, (12 = 2, 3, .) (3.14) 
k=l 

corresponds to any solution ‘~(x))fL,(-1,l) (l-cp-c2) Icp(x) I<n~((m>o) 0f Eq.(l.9) when I- 
e<x<l and -1gs<-I+&. 

ukekO (h) -‘- L elo (h) ly,, - b 0 nh 
k=8 

2No_ IJ v -__ 
3t 2h c 

akekl (h) L y$ e,, (h)N, - bl 
k=2 

(3.15) 

Conversely, if 

1) r (z) E Bp (-1, 1) (0 < a < I), 2) r (z) 63 B1@ (1 - e, I), 6 > 0, 1/2--cp<lr 3) r(~)~B1~(-l,-l-7e) 

and relations (3.15) are satisfied, solution ~(x))E &_,(-I, I), 1 q(x) I< m (m> 0) of Eq. (1.9) 

of form (2.11), when I--E< s.<iand -l&x<-I+&, correspond to any solution {an}< I, 

of system (3.14). 

Formulas (3.15) represent conditions of boundedness and, after the determination of a, 

from (3.14), are used for finding the unknown half-length of the contact region a and of the 

quantity e. 

Proof of Theorem 9 is the same as that of Theorem 5 if the inequality 

which can be checked using Hblder's inequalities /6/, is taken into account. 

Theorem 10. If 

1) r (I) E BP (-1, 1) (0 -C a < I), 2) r (4 E B,fl (1 - E, I), 8 > 0, l/,-c B < 1, 3) r (4 E B,fi (-1, -1 i- 4, 

the operator in the right-hand side of (3.14) acts in I, completely continuously for all 

values of parameters h, p E(O,m). 

Proof of Theorems 6 and 10 is similar. 

Theorem 10 implies that the infinite system (3.14) is solvable in 1, for almost all val- 

ues of parameters h, PE (O,oo). 
Having solved that system, we obtain the solution of Eq.cl.9) using formulas (3.12) and 

(2.11) and simultaneously determine the quantities a and e in conformity with (3.15) and 

(1.10). 

The author thanks V.M. Aleksandrov for interest in this work and advice. 
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